表面粗糙度標(biāo)準(zhǔn)體系的完善及其在發(fā)動機生產(chǎn)中的應(yīng)用
表面粗糙度標(biāo)準(zhǔn)體系的完善及其在發(fā)動機生產(chǎn)中的應(yīng)用
標(biāo)簽: (東風(fēng)商用車有限公司 湖北省十堰市 郵:442001)黃碩
摘要:零件表面結(jié)構(gòu)特征是由三部分組成的,即宏觀的形狀誤差、微觀的表面粗糙度及界于兩者之間的表面波紋度。它所影響的主要方面有摩擦系數(shù)、磨損、疲勞強度、沖擊強度、耐腐蝕性、接觸剛度、抗振性、間隙配合中的對中精度、過盈配合中的結(jié)合強度、對光的反射性能、流體阻力、鍍層質(zhì)量等。為此零件的表面粗糙度是零件質(zhì)量的重要表征之一。但國內(nèi)對評定表面質(zhì)量參數(shù)的選擇及定義與國外發(fā)達國家存在著差異,這對于有關(guān)表面質(zhì)量的新國標(biāo)在合資企業(yè)的上的應(yīng)用造成了困難。就東風(fēng)商用車而言,其生產(chǎn)的發(fā)動機五大件中有關(guān)表面質(zhì)量控制的相關(guān)參數(shù)使用的是法國標(biāo)準(zhǔn)。而從國內(nèi)購置的外協(xié)零件采用的是國標(biāo),兩者存在一定的差異,導(dǎo)致使用者使用上的不便。執(zhí)行標(biāo)準(zhǔn)的不同,對零件的生產(chǎn)、零件的質(zhì)量及性能都有很大的影響。
關(guān)鍵詞:表面粗糙度輪廓;國家標(biāo)準(zhǔn);演變;零件功能;
Improved surface roughness standard system and application in Engine production
HUANG Shuo
(Dongfeng Comuercial Vehicle Co.,Ltd.,Shiyan hubei,442001)
Abstract:The structural character of the surface of a part consists of three elements, which are form error, which is macroscopic, surface roughness, which is microscopic, and the surface waviness between them. It can affect the aspects such as friction coefficient, abrasion, tiredness intensity, anti-causticity, touch inflexibility, counter-shake, center aligned precision in the clearance combination, the linking intensity in the ultra-combination, ability to reflect light, liquid resistance, plating quality and so on. Therefore, the surface roughness is a very important character for describing the part quality. However, domestic demand for the assessment of surface quality parameter selection and definition of developed countries there are differences, which on the surface quality of the new national standard in the joint venture on the application caused difficulties. For example: For DFCV factory, the production of engines for five pieces of surface quality control parameters using the French standard. We learn that the national standard, there are some differences between the two, leading us to use the inconvenience. Especially external cooperation, they are entrusted to other companies in Xing yang factory processing, perform a standard different from the part of the production, quality and performance of parts has a great impact.
Keywords: surface roughness profile;GB;evolution;part of features;
1零件表面幾何狀態(tài)特性
在現(xiàn)代工業(yè)生產(chǎn)中,一個零件的許多技術(shù)性能的評價常常依賴于零件表面特征的狀況,零件表面的耐磨性、密封性、配合性質(zhì)、摩擦力、傳熱性、導(dǎo)電性以及對光線和聲波的反射性,液體和氣體在壁面上的流動性、腐蝕性、涂層的附著力、振動和噪聲等功能都與零件表面的幾何特征密切相關(guān)。表面的形成機理及其特征取決于它的加工方式和工藝要求加工過程中任何條件的變化,包括刀具的磨損材料中的應(yīng)力表面硬度的差異周圍環(huán)境的變化以及不規(guī)范的工藝流程都將引起表面幾何特征的變化,由此可見必須使用合適的加工方式和經(jīng)濟合理的工藝方法以獲得能反映特定使用功能的*化的表面特征參數(shù)。
零件在制造過程中產(chǎn)生的表面幾何形狀以及加工后的實際表面形狀與理想的表面形狀總是存在一定的偏差,實際表面往往是一個很不規(guī)則的復(fù)雜表面其上有一系列的具有不同間距和高度的峰谷,實際表面對于理想表面的幾何形狀的偏差現(xiàn)今劃分為三類,即形狀誤差、表面波度、和表面粗糙度。形狀誤差是指從表面整體形狀觀察分析表面的宏觀特征,通常只包含一個或幾個起伏不平,其起伏間距較大;表面波度則是表面上呈現(xiàn)出的周期性的起伏,其起伏間距較小;表面粗糙度指的是更小間距上的起伏;零件表面雖然從宏觀上看是平直的但從微觀上看是粗糙不平的,同一個加工表面往往受形狀誤差、波紋度和粗糙度這三類表面幾何形狀偏差的綜合影響,即三類幾何形狀誤差疊加在一起所形成的表面輪廓形狀,雖然如此由于各類偏差形成的原因和特性以及它們與各種使用功能的因果關(guān)系均不相同。
表面粗糙度反映的是零件表面上的微觀幾何形狀誤差,是表征零件表面質(zhì)量的重要技術(shù)指標(biāo)。它對零件的下述主要功能產(chǎn)生影響:抗彎強度、疲勞強度、干摩擦性能、粘滯摩擦性能、流體摩擦性能、抗腐蝕性、抗磨損性、導(dǎo)熱性、導(dǎo)電性、靜態(tài)密封性和動態(tài)密封性等等;表面粗糙度在零件磨合期間影響較大,根據(jù)零件的功能選擇加工方法時,應(yīng)注意表面粗糙度和尺寸公差的精度等級之間通常存在一種密切的關(guān)系。表面粗糙度主要由加工過程中刀具和零件表面間的摩擦、切屑分離時表面金屬層的塑性變形及工藝系統(tǒng)的高頻振動等原因形成的。因為表面粗糙度對零件的使用性能有很大影響,所以要對零件表面提出表面粗糙度要求,制造零部件時也必須予以保證。但是,在零件加工過程中,由于機床、刀具、夾具、工藝、潤滑、冷卻及零件的結(jié)構(gòu)、材料等因素的影響,使零件表面粗糙度產(chǎn)生各種缺陷,如最常見的:刀痕粗糙、鱗刺現(xiàn)象、表面波紋、劃傷拉毛、高頻率的振紋。這些缺陷的存在,往往使零件的表面粗糙度達不到產(chǎn)品的要求,嚴(yán)重時,導(dǎo)致零件功能的下降或喪失,因此必須采取相應(yīng)的措施加以解決。
2零件表面粗糙度對產(chǎn)品性能的影響
表面粗糙度反映的是零件表面上的微觀幾何形狀誤差,是表征零件表面質(zhì)量的重要技術(shù)指標(biāo)。它主要對零件的功能產(chǎn)生以下影響:抗彎強度、疲勞強度、干摩擦性能、粘滯摩擦性能、流體摩擦性能、抗腐蝕性、抗磨損性、導(dǎo)熱性、導(dǎo)電性、靜態(tài)密封性和動態(tài)密封性等等。下面就對耐磨性、配合性質(zhì)穩(wěn)定性、耐疲勞性、抗腐蝕性的影響進行具體的分析。
<1>對耐磨性的影響
影響摩擦表面的抗磨料磨損能力:
表面抗磨料磨損的能力與其最大峰高RP以及支承長度率tp關(guān)系密切。另外,它還與谷底所占的體積率有關(guān)。輪廓谷起著存積磨粒的作用,一旦各部位不足以存積掉下來的磨粒時,則磨損過程將大大加速發(fā)展。
對于有潤滑劑的表面,那些對油膜厚度有影響的粗糙度參數(shù),自然會對抗磨料磨損能力起作用。如磨損率隨粗糙度加大而加快,但在到達一定程度以后就趨向穩(wěn)定;橫向紋理比縱向紋理磨損快,但在粗糙度值較小時,紋理方向效應(yīng)逐漸減小以至消失。
影響摩擦表面的抗膠合磨損能力:
磨損的另一種形式是膠合,分為熱膠合與冷膠合。熱膠合是粘著磨損中由溫度誘因且居突出地位的一種磨損。通常發(fā)生在重載荷、高的滑速場合。冷膠合也是粘著磨損的一種,它不是由表面瞬時高溫所引起的,而與峰點接觸處的高壓造成塑性流動最后形成粘連有關(guān)。
由于膠合的發(fā)生與潤滑油膜的破裂有關(guān),因此前述影響動壓油膜的因素,在不同程度上也影響抗膠合能力。在同樣的表面輪廓幅度下,波長愈大則抗膠合能力愈高;而在同樣波長之下,不平度幅值增大時,抗膠合能力先提高,超過一定限度(油膜破裂)后開始急劇降低。
冷膠合大多發(fā)生在低速重載條件下,可以控制表面粗糙度的均方根的值和峰頂曲率半徑來限制塑性指標(biāo),使其小于1以減少冷膠合產(chǎn)生的可能性。
簡言之,相互運動的兩個零件表面越粗糙,則它們的磨損就越快。這是因為這兩個表面只能在輪廓的峰頂處接觸,當(dāng)表面間產(chǎn)生相對運動時,峰頂?shù)慕佑|將對運動產(chǎn)生摩擦阻力,使零件的表面磨損。
<2>對配合性質(zhì)穩(wěn)定性的影響
相互配合的孔、軸表面上的微觀小峰被去掉后,它們的配合性質(zhì)會發(fā)生改變。對于過盈配合,由于壓入裝配時孔、軸表面上的微小波峰被擠平,使有效過盈減少;對于間隙配合,在零件工作過程中孔、軸表面上的微小波峰被磨去,使間隙增大,因而影響或改變原設(shè)計的配合性質(zhì)。對靜配合表面,應(yīng)控制Ra或Rz以及表面的形狀誤差;對熱壓配合表面,還應(yīng)控制波紋度的深度和間距,但不必控制形狀誤差。 通??砂碦z不大于1/2公差帶的要求。但對于小尺寸的間隙配合則需另行考慮。
<3>對耐疲勞性的影響
影響摩擦表面的抗接觸疲勞能力:
接觸疲勞分宏觀點蝕與微觀點蝕兩類。表面形貌對前者沒有什么影響,主要影響后者。膜厚比越大抗微觀點蝕的能力愈強,壽命愈長。
還有粗糙度峰頂曲率半徑的比值愈低,愈大,壽命也愈低,但膜厚比大于3-4以后就不受這兩者的影響了。實驗證明,在兩個表面硬度相差較大的情況下,軟表面的幾何形貌不必控制,只需控制硬表面。另外在表面輪廓的頻譜中,對大于赫茲接觸寬度的大間距分量不必控制,只需控制小間距的那些粗糙度分量。還要特別注意那些突出的深谷,要單獨給予控制而不能依賴統(tǒng)計參數(shù)。
影響零件的彎曲或拉伸疲勞壽命:
對動應(yīng)力表面,要嚴(yán)格控制突出的溝槽和裂紋,愈是處于淺表面的愈重要。不能依賴統(tǒng)計參數(shù),最好采用單值高度單數(shù),此外,最好使紋理方向與應(yīng)力流線相平行,也與谷底的曲率半徑有關(guān)。
對靜應(yīng)力表面,因為它對應(yīng)力集中不敏感,通常只要控制
總之,對于承受交變應(yīng)力作用的零件表面,疲勞裂紋容易在其表面輪廓的微小谷底出現(xiàn),這是因為在微小谷底處產(chǎn)生應(yīng)力集中,是材料的疲勞強度降低,導(dǎo)致零件表面產(chǎn)生裂紋而損壞。
<4>對表面接觸剛度的影響
由于表面的凹凸不平,實際表面間的接觸面積有的只有公稱面積的百分之幾。接觸面積愈小,單位面積受力就愈大,粗糙峰頂處的局部變形也愈大,接觸剛度便會降低,從而影響到機件的工作精度和抗振性。因此需要控制表面輪廓峰頂?shù)男螤?,峰頂曲率半徑,輪廓峰的密度,以提高接觸剛度。
<5>對抗腐蝕性的影響
在零件表面的微小凹谷處,容易殘留一些腐蝕性的物質(zhì),它們會向零件表面層滲透,使零件表面產(chǎn)生裂紋而損壞。
<6>對表面密封性的影響
對于靜密封表面,應(yīng)控制垂直于泄露方向的表面粗糙度和波紋度、輪廓支承長度率以及形狀誤差。紋理方向要與泄露方向垂直,并限制波紋距,也不應(yīng)有突起的峰和深谷否則在密封面留下微隙會引起滲漏。
對于動密封表面,由于有相對運動,表面間含有潤滑油層,表面不能太光滑,以便貯油,其他要求與靜密封相同。經(jīng)過鋼球噴射后的表面上形成很多小坑,有如細(xì)密分布的油池,是理想的密封軸的表面。
<7>對表面涂層質(zhì)量的影響
對于電鍍的基體表面,建議采用車削或端銑,而不用磨削,并控制紋路間距和溝槽截面形狀,以使鍍層牢固。同時也要控制表面粗糙度和波紋度的大小。
對于涂漆的基體表面,基于同樣理由,也要控制紋路間距,如汽車上的冷軋薄鋼板就提出了這個要求,以提高金屬板的噴涂特性和噴涂表面的美觀。
<8>對滾動軸承噪聲和振動的影響
對于滾動軸承的噪聲振動,滾道波紋度的狀況要比表面粗糙度的影響大。此外,由于赫茲接觸主要與中線以上的輪廓相關(guān),因而表面質(zhì)量的優(yōu)劣可主要根據(jù)波峰部分的輪廓而不是谷部輪廓來判定。個別深而窄的谷底形狀對疲勞壽命也有影響,但對噪聲振動不重要。
3表面粗糙度控制在發(fā)動機制造中的應(yīng)用
3.1氣缸孔支承長度率的含義及測量
如圖1,氣缸孔經(jīng)過珩磨后,對其珩磨表面除了粗糙度和波紋度的要求外,還有三個磨削標(biāo)準(zhǔn)要控制,它們是:
磨合標(biāo)準(zhǔn):1μ≤C2%-C20%≤3μm
運行標(biāo)準(zhǔn):1.5μ≤C20%-C80%≤3μm
潤滑標(biāo)準(zhǔn):1.5μ≤C80%-C98%≤2.5μm
它們的含義為:
磨合標(biāo)準(zhǔn):缸孔表面輪廓頂部的部分,當(dāng)發(fā)動機開始運行時,將很快要被磨損掉,其減低的高度將影響缸孔進入正常工作狀態(tài)的磨合時間及實際材料磨損量。因此其產(chǎn)品規(guī)定了該輪廓頂部的深度必須在1μm到3μm之間,若該深度小于1μm時將影響缸孔進入正常工作狀態(tài)的磨合時間,若該深度大于3μm時,將加大缸孔實際材料磨損量。
運行標(biāo)準(zhǔn):缸孔表面輪廓核心部分深度,是缸孔長期工作的表面,它影響汽缸的運轉(zhuǎn)性能和使用壽命。產(chǎn)品規(guī)定了該輪廓核心部位的最佳深度在1.5μm 到3μm之間最合適,當(dāng)深度小于1.5μm時,將縮短缸孔的使用壽命,當(dāng)深度大于3μm時,將影響缸孔的運轉(zhuǎn)性能。
潤滑標(biāo)準(zhǔn):缸孔表面輪廓延伸到材料內(nèi)的輪廓部分,這些深入零件表面的深溝槽在活塞環(huán)相對缸孔運動時,有利于形成附著性能很好的油膜,在減少摩擦損失的同時,大幅度降低油耗。產(chǎn)品規(guī)定了該輪廓部分的最佳深度必須在1.5μm到2.5μm之間,若該深度小于1.5μm時將影響油膜的深度,摩擦損失增大,若該深度大于2.5μm時,將影響活塞在缸孔的運行速度。
評價缸孔表面質(zhì)量的這三個標(biāo)準(zhǔn)是基于缸孔表面未濾波的輪廓來進行計算評價的。其計算方法為根據(jù)產(chǎn)品給定的2個支承長度率來計算這2個支承長度率之間的深度差。其中C2%主要是為了去掉那些不影響產(chǎn)品性能的孤立的波峰,C98%主要是為了去掉那些不影響產(chǎn)品性能的孤立的波谷,保證測量結(jié)果的重復(fù)性,C20%、C80% 根據(jù)缸孔表面平臺珩磨工藝的特點及缸孔材料并進行長期的臺架試驗總結(jié)出的最能反映產(chǎn)品質(zhì)量狀態(tài)的兩個參數(shù)。
3.2曲軸各個軸頸表面狀態(tài)參數(shù)的含義及測量
3.3缸體頂平面粗糙度要求測量分析
通過測量數(shù)據(jù)的對比說服了他們珩磨頂平面加工工藝是不能取消的。
隨著加工技術(shù)的發(fā)展,如果說采用新工藝、新材料、新刀具后零件加工質(zhì)量能夠達到產(chǎn)品技術(shù)要求,還是要大膽采用新技術(shù),以降低生產(chǎn)成本,提高企業(yè)競爭力。
3.4排氣管缸蓋結(jié)合面粗糙度測量分析
3.4排氣管缸蓋結(jié)合面粗糙度測量分析
4總結(jié)
表面形貌極大地影響著零件的使用性能,合理地表征和評定表面形貌是一項具有重要意義的課題,表面粗糙度理論及標(biāo)準(zhǔn)在不足百年的時間內(nèi)得到了巨大的發(fā)展,隨著當(dāng)今微機處理技術(shù)、集成電路技術(shù)等的發(fā)展,出現(xiàn)了輪廓法、圖形法、功能參數(shù)集法、時序分析法、最小二乘多項式擬合法、濾波法、分形法等各種評定方法,取得了很大的進展,像輪廓法、圖形法、功能參數(shù)集合法三種方法已經(jīng)在汽車制造行業(yè)得到了廣泛應(yīng)用,時序分析法、最小二乘多項式擬合法、濾波法、分形法正在汽車行業(yè)試驗應(yīng)用,但這些方法目前都只能得到真實表面的有限信息,仍然存在一些問題有待完善:如:表面輪廓微觀統(tǒng)計特征的全面準(zhǔn)確描述問題;表面輪廓為隨機過程,評定參數(shù)的值并不確定,由此產(chǎn)生了測量不確定性問題;評定參數(shù)的相互關(guān)系以及參數(shù)數(shù)目越來越多的參數(shù)爆炸問題;表面輪廓的測量結(jié)果受測量基準(zhǔn)和儀器分辨率影響的問題;表面粗糙度參數(shù)與使用性能不能*對應(yīng)的問題。但隨著汽車工業(yè)的高速發(fā)展,這些問題終將被解決,越來越多的表面粗糙度評定方法及參數(shù)將得到廣泛應(yīng)用。
在論文中稍有不足之處在于對所列舉的生產(chǎn)實例分析不夠全面及深度也稍顯不足;另一方面,在寫論文過程中所采集到的數(shù)據(jù)未能充分列出。
隨著科技的發(fā)展,人們對產(chǎn)品質(zhì)量的要求不斷提高,傳統(tǒng)的表面粗糙度二維評定已經(jīng)不能適應(yīng)社會生產(chǎn)的需要,表面粗糙度的三維評定將成為表面質(zhì)量評定的必然趨勢,表面粗糙度的測量方法也將向高速、高效的光學(xué)非接觸方向發(fā)展。同時,希望論文不足之處在今后能得到完善。
- 上一篇:如何選擇符合您無損檢測需求的黑光燈
- 下一篇:介紹超聲波測厚儀的工作原因